LanguageGame – an interactive parser generator

Takashi Yamamiya
Qript One Soft, Inc.

propella@yuri.sakura.ne.jp

[image: image1.png]

Fig. 1: Overview of LanguageGame
Abstract
LanguageGame is a tool for a non-professional computer user to make a new programming language. Playing with LanguageGame allows a user to make an original new programming language.

In order to give an instruction to a computer, now we have many ways such as selecting menu, push button, drag icon or so. Recent researches of computer user interface have developed various methods of interacting with computer. Above all, with using WYSIWYG (What You See Is What You Get) way, user interface becomes very rich and useful for non-engineer users. But yet, the most fundamental way of having a dialog with computer is to input a sequence of command kind of programming language.

Using WYSIWIG style has advantages when a user uses a computer instead of real paper. But to deal with more abstract or involved matter, using a programming language has more benefit because symbols are more stable and we can use powerful idea as a recursiveness or a reference with such language. The importance of programming language could never change however GUI will be more improved.

There are various languages in the world, and there are many interesting aspects and tastes in each language. As the grammars of the programming language are very interesting, developing a language must be more fun. Of course making a language seemed to be difficult. And it was planned to develop a parser generator that common people can make their own language easily.

A parser generator is one of the most basic software in computer. Historically, various programming languages have been developed. And to make developing their parser easily, the technique of automatic parser generation was found. Now the parser generator becomes established technology.

LanguageGame is such a parser generator that has graphical user interface. Contrary to popular professional parser generator like yacc/lex in UNIX platform, it is intended to use non-professional computer users, students and children. Playing with LanguageGame, users can learn and build simple parser with pretty graphical interface, drag-and-drop and graphical syntax tree representation.

In current implementation, LanguageGame is developed on Squeak – a free open environment of Smalltalk. Hereby, the user grammar with LanguageGame can use all Objects like a sketch and sound in Squeak.

Introduction
Strangely, there are many different fields' ideas of beauty have in common [1]. Particularly in the 20th century, the word “recursiveness” appeared in many fields in our culture.

In example, Marcel Duchamp, one of the most important contemporary painters, showed a work called “Fountain”(1917). That was just an acquired lavatory urinal but it is appeared his idea of “ready-mades”. A urinal has no originality and no taste, but in the museum, a mere urinal can become an artwork. He showed the importance of contexts of the art has, not the art is.

John Cage, the out of the ordinary musician had a question of what the music is. In his 4’33”(1952), he tried to make a piece with no sound. The environment itself in which it is performed is his music.

These works referred to a something of their meta-level and these have a same aspect related to the recursiveness. Moreover in the science, the recursiveness has more power and build great works because it can make short description as rich content. When building a programming language, the recursiveness is main technology. One of the LanguageGame’s purposes is that it makes recursiveness user friendly.

Feature

[image: image2.png]

Fig. 2: Tile tools of LanguageGame

In this section, the current implementation of LanguageGame is introduced. As development progressed, it becomes clear about the character that LanguageGame should be equipped. The following are especially mentioned as an important point.
Real-time operation

To make user operation reflect as immediately as possible, improvement in user-friendliness can be expected. The data structure required for this real-time nature was designed.

External representation of symbols

Usually, we write a computer program using a series of texts. But not only texts, we can write a program using any symbols like graphical icons if scanner can analyze them. In LanguageGame, programming with pictorial symbol was supported in order to give a sociable impression to user.

Semantic analysis

To describe a grammar, BNF (Backus-Naur Form) notation was established. But to describe a meaning, there are many ways for definition. In LanguageGame, notation of BlockContext is used in action phase as representation of meaning.

Debugging
Not only for programmer, but also for general user, it is important to understand how to process in any program. Watching internal process and changing its behavior dynamically, a user can get insight into the system intuitively. The simplest debugger that realizes this purpose was developed.

Cooperation with external object

To operate external objects freely, a user can create pleasant application. Then LanguageGame need adjustable external interface. It is very difficult work to design such interface. In the present implementation, reference of an external object was statically stored in the class variable and the object can be referenced in action block context.

Design

Main window

[image: image3.png]E oz EE [x

E % coumbers ¢

Fig. 3: LanguageGame main window

A main window has two panes. The upper part is called grammar pane that BNF notation is described. And the lower part is input pane that a user can input the sentence to be analyzed now. As each interface, text mode and tile mode exists. A grammar or a sentence can be build intuitively with drag and drop in tile mode.

[image: image4.png]

Fig. 4
[image: image5.png]

Fig. 5

Fig. 4: Menu for the grammar pane

Fig. 5: Menu for the input pane

With a right click, the control menu appears. The meaning of commands are as follows.

text/tile
Toggle to text/tile mode

palette
Show palette displayed symbols which can be used in the grammar

images
Show images tied in symbols

tree
Show syntax tree

inspect
Show inspector of the parsed node

explore
Show special explorer of the parsed node

fire
Execute action if present grammar has actions

save …
Save current grammar(save as instance method in GGrammarUsers class)

load …
Load a saved grammar

build
Rebuild current grammar

step
Do step execute current input

monad
Show an object for lazy execution of current input (for developer)

Table 1 Menu

Describe grammar

In LanguageGame, BNF notation that is subset of T-Gen [3] is used. But compare to T-Gen, a user cannot make own scanner but can use preset scanner in LanguageGame. How to describe grammar are follows.

nonterminal : symbols … [action block]

· Any right hand side can be omitted.

· A symbol is a nonterminal or a terminal.

· A symbol begins with a letter and is followed by zero or more letters or digits.

Action block is any Smalltalk’s block notation.

E: plus E E

E : <number>

This is a sample of a grammar rule. The rule can parse a text like ‘plus 1 2’ ‘plus 1 plus 2 4’. Differences of notation from T-Gen are as follows:

· LanguageGame only supports LL grammar.

· LanguageGame does not support parallel rule using ‘|’ and regular right-part grammars using ‘*’ and ‘+’.

· LanguageGame recognizes automatically terminals from nonterminal symbols.

LR parser of T-Gen could be used in the system. But because top-down parsing is suitable to describe BNF using tile scripter, LL is used.

Tile

[image: image6.png]

Fig. 6: Drag on nonterminal

[image: image7.png]

Fig. 7: Complemented terminals

A user can input with tile mode either a grammar pane or an input pane. In tile mode, to add the symbol is possible with drag and drop.

To use a tile in the input pane, first, you should call a palette pane from right click menu. Terminal symbols that can be used in the present grammar will be in the palette. When you drag the terminal tile from the palette to a nonterminal tile in an input pane, the nonterminal changes green if the nonterminal can acceptable the terminal.

If a nonterminal can determine which rule does match for the terminal uniquely, the remaining terminals of the rule are complemented automatically.
Using phase tile of eToys in block

[image: image8.png]xB Gengo Game: bonzeSent

e

Ny Y P [— |

rule * Alice

 Fig. 8: Drop a phase morph

[image: image9.png]xB Gengo Game: bonzeSentence

rule : Alice is beautiful [phrasetile2083 try]
rule : <word> is hungry

DY

 Fig. 9: An action block made from a phase morph

In a grammar pane, a user can also do tile operation. Additionary, in the block element where is rightmost of a rule, a user can drop a phase tile from eToys’ viewer. In this case, the phase tile is automatically changed to expression of a block context in Smalltalk.

Using image in tile

[image: image10.png]

Fig. 10: Editing external name

[image: image11.png]rule : Alice is beautifu
rnle - awocds is hunocy

is beautiful

Fig. 11: Drop a sckech morph

[image: image12.png]X B a GMorphDirectory. 10
8 (o9 fem)

Alice

Fig. 12: An image tool

As a tile, not only a string but also any morph can be used. LanguageGame treats externalName of the morph as a terminal symbol of the tile. Specifically, if a morph is named and is dragged into a tile, the morph treated as a symbol string of the tile. The morph is bound with the symbol then registered in the system, and the registered symbol string is always able to change into morph.

Using this function, programming by the pictorial symbol is realizable. It may be useful for user who cannot speak English and also to collaboration among people who have another language.

To look and delete these registered morphs, an image tool from menu is used.

Action block

Action block is used to add a meaning to syntax tree. An example is shown as follows:

carton : [0]

carton : egg carton [:a :b | 1 + b]
This grammar counts the number of words “egg” in the input sequence, and returns the number. In example, to input a sequence “egg egg egg”, the following tree is generated.

[image: image13.png][carton]
A}
[carton)
LY

[carton)

s Ay

™ [carton

egs| T

Fig. 13: Syntax tree

In the beginning, when this sentence is executed, the block matched a first rule is executed. In this case, an empty symbol matches “carton : “ at the lower right of Fig.11, and [0] is executed. This is a Smalltalk sentence that only returns zero.
Next, rule of the 2nd line “carton : egg carton” matches. By this block, egg is assigned to variable a, carton is assigned to variable b, and 1 + b is performed. In this case, what was assigned to b is set to 0 of the answer performed by the first block.
Debugger

It is easier to actually be shown rather than to explain by sentence about operation of a computer. LanguageGame is prepared easy debugger called Mole to debug grammar happily. Mole is shown with a right click menu on the nonterminal of a syntax tree.

[image: image14.png]

Fig. 14: Mole

When Mole is clicked, it will move onto the symbol that should be executed, and display the answer returned from the action.

Mole is also controllable with the mechanism of eToys in Squeak, and it has ‘fire’ command in eToys’ viewer.

Implement

Tile interface and syntax tree

There are some advantages in using tile style like eToys to input from a user. One is that the users have familiarity. Another is being able to restrict operation of user appropriately. Restriction of operation can reduce incorrect operation and can stay focus a user on the essence of the problem. In order to restrict suitable operation, the complex interaction between tiles is required.

Additionally, a tile operation and LL parser led interesting feature, real-time tree building. Usually, when a parser interprets an input sequence, it recognizes one word at a time from a head. But in the LanguageGame, when a user change a code, a parser can modify a middle node of a point of modifying, not to read again from the beginning. In the LL parser, it is easy because a first symbol in right-hand determines a production rule. To realize these features, the following structure ware required.

The GTile object for displaying a tile on a screen:

The GTile itself does not know the meaning of a sentence but know a GNode. If other morph dragged on the GTile, it will ask its GNode the processing. GNode decides whether accept the morph as a symbol or ignore.

The internal structure GNode of a tree:
To realize real-time parsing function, the node itself has the reference to its parser. The following operations are performed when the terminal B is dragged to the nonterminal A.

First, A compares whether an own parser and the parser of B are the same. When it differs, B "is made to pollute with A's parser", and B is scanned again. When the grammar class of B is acceptable, A chooses the rule that suits from own parser, and make B a child node according to the rule. When other child nodes become settled uniquely by the rule, the child node, which suits automatically, is generated and it connects (it works as an input complement).
Action and debugger

When “fire” is selected in the menu on an input pane or a tree, LanguageGame executes its sequence.

If it is where simple four-arithmetical-operations computer is created, this is realizable just to evaluate the given block according to input. However, using execution control of a loop etc. and a debugger, the simple wrapper for supporting delay execution is needed.
To hide the complexity of delay execution from a user, the delay execution object GMonad in LanguageGame has adopted the model “perform after asking.”
For example, When the block [:a :b | b + 1] is given, what is bound to a or b is not the value of a symbol but the GMonad object lapped over the value. The value is not executed immediately, but the GMonad object lapped the value with block is bound to the variable of the following rule. When execution is completed and an asString method is called to display on a screen, a GMonad begins to perform as a string. In many cases, a GMonad executes its value and return the result as string. Except that value method was called, a GMonad returns its block as it is. Control structure is realizable with this feature.

When a GMonad evaluates self, an exception occurs each time for debugging. Although this exception is usually ignored, but when Mole debugger runs for debugging, Mole receives this exception, interrupts its process and tells a user about the context that has variables under execution.

As interesting usage, combining this debug function and eToys’ step execution, such as a musical automatic performance can be carried out.

External object

LanguageGame hold the reference to external objects as a GGame class variable. There are the two following kinds.

VariableTable

The dictionary showing the variable used within a block. When any morph is dragged into text mode pane, morph will be registered into VariableTable. Thereby any morph can be operated in a block.

SymbolCostume

It is the dictionary, which connects a morph to a terminal. A morph registered at once can be used in all LanguageGame windows.

Future task

The present implementation has many redundant and unstable elements. The goal should be narrowed down from now and aiming at the implementation that is easy to use. Anyway, certain concrete applications and a technical improving point are described

Technical improvements

Buildup of drag-and-drop function

In tile mode, now the function of symbol operation with drag and drop is poor. Especially, insertion is impossible although adding and deletion of symbol are possible. For make insertion possible, it is necessary to display an insertion point to detect the pattern of list expression like list : | first list.

Accomplishment of real-time parsing

The real-time parsing, which is a feature of LanguageGame, which is still incomplete. Especially, it has many portions with unstable operations in order to have to hold an incomplete syntax tree while usual parser generator treat only complete syntax tree. This portion should be completed. Moreover, although now only LL grammar is supported, larger grammar class is necessary for practical uses.

Support of regular right-part grammar

To be dependent on BNF grammar with recursiveness, now it does not understand easily for non-programmer especially to describe a grammar as list structure. The notation will be friendlier and more intuitively to adopting regular right-part grammar.

Educational application

When dealing with recursiveness or tree structure in fields, such as mathematics and chemistry, LanguageGame offers an intuitive model. There are many cases that the notation of an idea is difficult but not the idea itself. In such a case, unnecessary confusion will be avoidable to design simpler notation with LanguageGame.

As a precedence example in this direction, there are functional language groups like as Lisp and Haskell. Those languages are suitable for symbol processing to be nearly mathematical notation. LanguageGame also has the character like a functional language because it does not depend in order of processing and it does not have a state. Then LanguageGame can be said that it is the environment that united with descriptiveness of a functional language and friendliness Squeak has. Moreover, the environment of Lisp or Haskell itself can be implemented in Smalltalk using the framework of LanguageGame, and the multimedia nature of Squeak can also be united with the logical feature such languages have.

Practical application

A lot of interesting application can be considered from the LanguageGame’s function of dynamic syntax tree generation. For example, recently in integrated development environment (IDE), it needs the function to detect dynamically the code that a user inputs and to provide an input complement and help. If the parser generation system of LanguageGame is more developed, the comprehensive framework for such input support function can be made. Moreover there may be applicable to the input support not only in development environment but also general purpose.

It is a very effective idea that complex object is made from a text in a viewpoint of the application productivity. For example, in web application, now using HTML language makes building interface easily and more portable than RAD system. Although XML with abstract semantic data will more popular, using a language for more abstraction that specialized in each application, it will be able to generate a user interface automatically from a business rule.

In system development, cost occurs with the objective description of a business rule as well as programming. As another possibility of LanguageGame, there are development and implement of notation that support description of such a business rule.

Summary

To focus attention on the educational purpose as the first goal of LanguageGame, it is specializing in the meta-level concept of programming compared to other programming tools for education. That is to say, this is a tool for understanding the program that makes a program rather than the teaching material for doing/use of a program.

This is a unique feature but has a risk of the purpose becoming ambiguous. Then for LanguageGame, how to use with many samples is required.

LanguageGame is still under development, and it is still instability and need more function. But because an idea of programming language is very important idea in computer and our life, I believe that people can get more deeply sight for computer and our world to play with LanguageGame.

“It will mean the unspeakable by clearly displaying the speakable.”
- Wittgenstein Tractatus Logico Philosophicus 4.115
References

[1] Taste for Makers
Paul Graham
http://www.paulgraham.com/taste.html
[2] Compilers Principles, Techniques, and Tools

A. V.Aho, R. Sethi, J. D. Ullman

[3] T-Gen User’s Guide

Justin O.Graver

_1106947834.doc
[image: image1.png]

_1107521788.doc
[image: image1.png]

_1108044799.doc
[image: image1.png]

_1106947950.doc
[image: image1.png]

_1106815292.doc
[image: image1.png]xB Gengo Game: bonzeSent

.

Ny Y P [— |

rule * Alice

_1106818203.doc
[image: image1.png]

_1106818404.doc
[image: image1.png]rule : Alice is beautifu
rnle - awocds is hunocy

is beautiful

_1106820324.doc
[image: image1.png]X B a GMorphDirectory. 10
8 (o9 fem)

Alice

_1106815462.doc
[image: image1.png]x8 Gengo Game: bonzeSentence

rule : Alice is beautiful [phrasetile2083 try]
rule : <word> is hungry

DY

_1106814749.doc
[image: image1.png]

_1106814936.doc
[image: image1.png]

_1106506799.doc
[image: image1.png]

_1106507617.doc
[image: image1.png]

_1106497145.doc
[image: image1.png]E oz EE [:

E % cnumbers

