

Skeleton – easy simulation system

Takashi Yamamiya
propella@yuri.sakura.ne.jp

Abstract
Skeleton is a visual scripting environment as an

extension of Squeak etoy [1] with Connectors [2] system
to make mathematical and physical simulation for non
professional computer user. Squeak etoy system is a
unique attempt to provide effective way of programming
for children in learning environment. Skeleton makes
logical relationships among graphical objects in the etoy
system with spreadsheets-style interface, and users can
describe object’s behavior in declarative representation.

Concreteness is one of the key words of end user
scripting. Direct manipulation of objects on the screen is
helpful to understand what happened in your computer.
Skeleton’s spreadsheets style interface realizes this
concreteness to show any input and output data same time.

Sometime user scripting system like etoy has a
problem of modularity. This aspect is important as a basis
of reusing, thus Skeleton has some features for reusing.
Tree structured naming system like ECMAScipt [3] is used
to access to Skeleton object by name. And modularity is
realized by sheet-card mechanism that is possible to reuse
a behavior of objects in another context in Skeleton.

Background
There are a lot of works in end-user scripting or visual

programming. ThingLab [4] emphasizes declarative
relationship among objects as idea of “constraint” and,
allows user to build application with concrete manipulation
of graphical objects. Fabrik [5] has a metaphor of wired
components. These wires are representation of multiple
path data flow.

Spreadsheets are widely used in end-user computing
today. They have a matrix format and each cell is
connected by formula that represents a relationship among
each cell. As all values deal with calculation include input
and output are shown to users all the time. This character
is fit to logical programming as interface of prolog [6]

Spreadsheet has not only used as business application,
but also as user friendly interface in the experiment of

end-user scripting. ASP [7], NoPumpG [8], and C32 [9]
are attempts to apply a power of spreadsheet’s
understandability to build graphical interface.

Squeak etoy system provides user friendly and
instance based programming interface. Instance base
means that each objects behavior are described by each
object itself, not by abstract class definition. The aim of
the Skeleton project is to mix etoy’s flexibility with logical
perspicuity and verifiability borrowing spreadsheet style
interface.

User interface
This section is described about user interface of

Skeleton using a geometric example borrowed from
ThingLab [4]. This example is to demonstrate a geometric
theorem, which states given an arbitrary quadrilateral, if
one bisects each of the sides and draws lines between the
adjacent midpoints, the new lines form a parallelogram.

Fig. 1 Skeleton sheets and morphic points

Morphic is basic graphical object system in Squeak.
User can manipulate morphs by mouse operation directly,
or by tile scripts with slots of the morph. Skeleton has
capability dealing with these morphic slots. Now we pick
up a Skeleton sheet and three points on the screen from
“supply flap”. Then we write object’s name on the sheet as
labels like “Blue’s X, Blue’s Y …”

Fig. 2 drop a slot of morph to cell

Fig. 3 attached cells

Using drag-and-drop, a slot of morph can be
connected with a sheet’s cell. We attach each x-y
coordinate of point into cells.

Fig 4. formula keeps midpoint

When we put a formula in an attached cell, related
morph is moved by the formula. In this case, “= A1 + E1 / 2”
means “yellow’s x = (blue’s x + red’s x) / 2” (in Smalltalk
syntax, all binary operators have same priority). The
formula is used to calculate coordinate of midpoint of blue
and red. As ordinary spreadsheets, first character ‘=’ in
cell is indicated as formula.

Fig 5. card made from sheet

Formulas on top row of the sheet have special
meaning. These formulas can be reused on other sheets as
card. A card is made by dragging change-size halo to
become the sheet small.

Fig 6. embded card in other sheet

Card can be embedded any sheet. We make four
copies of the card and put into new sheet named
“QTheorem”.

Fig 7. attaching othe slot to card

After we assign all card with more morphic objects
and joining by Connectors’ [2] line. The project can show
a quadrilateral theorem.

Fig 8. demonstrate theorem

Basic feature
Skeleton has basic functions of spreadsheet. Like

commercial spreadsheets, it has matrix includes cells with
formulas. To describe a formula, Skeleton uses mix syntax
of Excel-like expression and normal Smalltalk expression.
Each cell is pointed as ‘A1’ style position or user defined
string name. Any numbers, strings or Smalltalk objects are
stored in cells. Additionally, etoy’s slots can be attached
with cells, and any morphs are controlled by Skeleton.

Relative reference and listing reference of cells is not
supported. For this purpose, card mechanism is used for
reusing formula. After user makes a formula in a
spreadsheet, the user can reuse the formula to make its
card from the spreadsheet. The relationship among card
and spreadsheets (sheet) is similar to instance and class in
object oriented concepts.

Some predefined library cards are provided. They
include mathematical function like sum and average.
Name is used for specifying these library cards. User
defined named cells, sheet, and library cards are in same
name space, and the system bounds their name using same
mechanism. A formula can use the name with tree
structured path to search these names.

Architecture
One of the most important requirements of Skeleton

was flexibility. Skeleton is not stand-alone system, yet it
needs to connect to existing etoy’s base system, and needs
various kind of ability to make interesting application. So
Skeleton consists of several parts for this requirement.

Kernel and library

Kernel provides basic services include handling
spreadsheets-style interface and naming protocol. But any
concrete data storage and computation is not included.
Kernel defines just how an object shows and what name is
the object. Therefore any different data structure and

updating strategy can be mixed. This is because to suppose
to be written various logical primitive library as building
block for specific demand. Skeleton’s standard spreadsheet
SkSheet is just one of the libraries.

Name

SkObject (Skeleton object) is basic element in
Skeleton. All SkObject can have spreadsheet like user
interface and a name. Basic interaction between user and
SkObject is based on a text sequence with its name, not
direct object reference. It is because portability and
transparency. All objects in Skeleton must be able to
access by string name or cell position to be accessed.

Cell position is used for local access in object, but
using name can be got across other object. Any SkObjects
don’t hold its own name, but they are named by parent
object. To keep the parent object, a SkObject has a special
property named ‘parent’. Property is a kind of cell it has a
name but doesn’t have a position; a property is used for
storing information for system. All SkObjects construct
one tree as follow.

Fig. 9 system sheet and naming structure

Root is a start object for the name tree. It has a
reference for Root itself, and for Library and Projects.
Library keeps each library names and objects. Projects are
associated with Squeak Project’s object. Each user defined
sheet is associated in its project, and all sheets on same
project shared same namespace.

To find a name, the system searches SkObject as
dictionary, then searches parent object if it couldn’t find.
Library that is for common predefined library is searched
after Root.

Updating

Skeleton has own updating system extended original
Squeak updating mechanism. Its brief flow is followed.

Fig. 10 updating flow in a frame

Each frame, the sequence is executed by UI process.
Skeleton objects are updated just before drawing screen
because it must be synchronized with morphic stepping
cycle to draw smooth graph or animation in etoy’s project.

Card

Card is basic mechanism for reusing in Skeleton. Any
Skelton object can make its own card. Then the card is
used to embed other object. A card holds original object’s
behavior and most messages are delegated to original
object. First row of the object has a special meaning. When
a card is embedded in other sheet, the card tries to update
cells under the card as these are top rows of the original
object.

In card execution, the data flow related cells can be
bidirectional and there are no distinction of input and
output to show on spreadsheet. But some library assumes
that first cell is output and others are input customary (e.g.
sum). First cell is left end cell by ordinary. But user can
change the direction of card.

Library’s protocol

All Skeleton’s library object is a subclass of SkObject
that defines relationship among cells in Skeleton. For
kernel, Skeleton object behaves just as a dictionary. The
dictionary’s key can be a string and/or a point. A user
defines new Skelton object to make Smalltalk class or to
construct from standard Skelton spreadsheet (SkSheet) as
normal spreadsheet applications.

#at: and #resolveOn: messages are the most common
protocol of SkObject. A parameter of #at: is point or
string. String key is used for named access, and it is
applied tree structured search path. But a point is noted in
the object locally. #resolveOn: message is send when the
object should do something. In many cases, an object reads
its cells, solves some problems, and stores the answer to a
cell. The augment of #resolveOn: is the SkObject itself or
another SkObject that is used to reuse.

Planning

A lot of researchers have proposed methods for
determining execution order for declarative language so
far. In Skeleton, any SkObject can have its own strategy,
but most common used is SkSheet’s planner. It is simple

Event handling

Morphic stepping mechanism

Skeleton updating

Drawing screen

Root
 Root
 Library

 Libraries …
 Projects

 User projects…
 User defined sheets …

enough but can handle circulation dependency. This
planner has two phases.

Building phase

When a user updates a formula, the building phase is
invoked. System scans all cells left to right, and top to
bottom, and then makes a graph showed about cell’s
dependency. Circulation dependency found afterward is
taken out simply. Then an order list of cell execution and a
reverse reference map is made from the tree.

Updating phase

A SkObject is called each frame before drawing, but
any formulas are not executed until it meets conditions. In
example, each cell of SkSheet is updated just when
dependent cell is updated by other force using a reverse
reference map. In this strategy, circulation constraint is
resolved even if the dependence graph was not complete.

Programming Style
Code reading is regarded as an important issue. Once

a program is written, the code comes out and is read by
other people widely. Despite reading code is harder than
writing code, much effort must be gone for maintenance
code after developed. The concrete oriented scripting style
of Skeleton helps writing code as readable documentation.
Using common example of “Fahrenheit / Celsius unit
converter” that is also in ThingLab, we describe a typical
programming style for example in Skeleton.

Fig. 11. Describe specification

First, to make sure what the code is, some
documentation and examples are written the sheet. These
examples show how the code does in concrete form.

Fig. 12 writing code the top of sheet

Along the specification, we write codes on top row of
the sheet.

Fig. 13 embed card into itself

When the code is complete, we can make a card of the
sheet, and embed the card into original sheet itself. The
card is used to test if the code satisfies given specification,
and used as live documentation for someone or yourself in
future.

Fig. 14 using on other sheet

Conclusion
The Skeleton system provides simple and flexible

extension of Squeak etoy system. It controls any etoy’s
object with easy spreadsheet style interface. The
spreadsheet has abundant ability to use dynamic nature of
Smalltalk directly, and has modularity with card system.

References
[1]. http://www.squeakland.org/
[2]. Connectors http://nedkonz.dhs.org:8080/Ned/8
[3]. http://www.ecma-international.org/publications/standards/Ecm

a-262.htm
[4]. A. Borning. “The Programming Language Aspects of ThingLab, A

Constraint-Oriented Simulation Laboratory” 1981
[5]. D. Ingalls, S. Wallace, Yu-Ying Chow, F. Ludolph and K. Doyle,

“`Fabrik: a visual programming environment” 1988
[6]. Michael Spenke and Christian Beilken. “A spreadsheet interface

for logic programming” 1989
[7]. K.W. Piersol, “Object Oriented Spreadsheets: The Analytic

Spreadsheet Package” 1986.
[8]. C. Lewis. NoPumpG: “Creating interactive graphics with

spreadsheet machinery” 1990.
[9]. B. Myers, “Graphical Techniques in a Spreadsheet for Specifying

User Interfaces” 1991.
[10]. Gregg Rothermel, Margaret Burnett, Lixin Li, Christopher DuPuis,

Andrei Sheretov “A Methodology for Testing Spreadsheets” 2001
[11]. Marc Stadelmann. “A spreadsheet based on constraints” 1993

This project was sponsored as Exploratory Software

Project by Information-technology Promotion Agency
Japan.

